The reversed \boldsymbol{q}-exponential functional relation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 305405
(http://iopscience.iop.org/0305-4470/30/15/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:50

Please note that terms and conditions apply.

The reversed q-exponential functional relation

David B Fairlie \dagger and Ming-Yuan Wu \ddagger
Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK

Received 21 April 1997

Abstract

After obtaining some useful identities, we prove an additional functional relation for q-exponentials with reversed order of multiplication, as well as the well known direct one, in a completely rigorous manner.

1. Introduction

One of the most appealing results to come out of q-analysis is that the q-exponential function, defined by ${ }_{q} D_{x} \exp _{q}(x)=\exp _{q}(x)$, where ${ }_{q} D_{x}$ is the q-derivative, also satisfies the same defining functional relationship for ordinary exponential functions (up to normalization), given by

$$
\begin{equation*}
F(x) F(y)=F(x+y) \tag{1}
\end{equation*}
$$

provided that $x y=q^{-1} y x$ (that is, (x, y) belongs to the Manin quantum plane). This result was first found by Schützenberger [1] long before the non-commutative aspects of q-analysis were generally recognized and has been rediscovered many times subsequently, for example in $[2,3]$. It can be proved by means of q-combinatorics [1,2], or by an argument based on the definition of the q-exponential as an eigenfunction of the q-derivative [3].

Besides the above well known result, there is, in fact, an additional functional relation in the opposite order for the q-exponential functions, which is not so well known given by

$$
\begin{equation*}
F(y) F(x)=F\left(x+y+\left(1-q^{-1}\right) y x\right) \tag{2}
\end{equation*}
$$

provided that the same condition $x y=q^{-1} y x$ holds. We first became aware of this relationship in the work of Faddeev and Yu Volkov in their study of lattice Virasoro algebra [4], when they obtained a similar result in the case of a different realization of the q-exponential, in terms of an infinite product. Their definition of the q-exponential suffered from the drawback that it did not go over into the ordinary exponential function in the commuting limit $q \rightarrow 1$. In this paper, we will provide a completely rigorous proof of the reverse functional relation in the form stated in (2). The proof is somewhat tricky in that a seemingly unrelated identity has to be obtained first as an intermediate step.

[^0]
2. Proof of the reversed \boldsymbol{q}-exponential functional relation

For completeness we quickly review Schützenberger and Cigler's result, which will be used in our subsequent proof:

$$
\begin{equation*}
\exp _{q} x \exp _{q} y=\exp _{q}(x+y) \quad \text { if } x y=q^{-1} y x \tag{3}
\end{equation*}
$$

where

$$
\exp _{q} x \equiv \sum_{n=0}^{\infty} \frac{x^{n}}{[n]!} \quad[n] \equiv \sum_{k=0}^{n-1} q^{k} \quad[n]!\equiv[n][n-1] \cdots[1]
$$

Proof.

$$
\begin{aligned}
\exp _{q} x \exp _{q} y & =\left(\sum_{m=0}^{\infty} \frac{x^{m}}{[m]!}\right)\left(\sum_{n=0}^{\infty} \frac{y^{n}}{[n]!}\right) \\
& =\sum_{k=0}^{\infty} \sum_{r=0}^{k} \frac{x^{r} y^{k-r}}{[r]![k-r]!} \\
& =\sum_{k=0}^{\infty} \frac{1}{[k]!}\left(\sum_{r=0}^{k} \frac{[k]!}{[r]![k-r]!} x^{r} y^{k-r}\right) \\
& =\sum_{k=0}^{\infty} \frac{(x+y)^{k}}{[k]!} \quad(\text { by (A1), see the appendix) } \\
& =\exp _{q}(x+y) .
\end{aligned}
$$

Now let us go on to prove the following formula:

$$
\begin{align*}
x^{n} & =1+\sum_{r=1}^{n} \frac{\left[\left(q^{n-r+1}-1\right)\left(q^{n-r+2}-1\right) \cdots\left(q^{n}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)} \\
& \equiv \sum_{r=0}^{n} \frac{\left[\left(q^{n-r+1}-1\right)\left(q^{n-r+2}-1\right) \cdots\left(q^{n}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)} . \tag{4}
\end{align*}
$$

Proof. Suppose for some $n=k$ we have
$x^{k}=\sum_{r=0}^{k} \frac{\left[\left(q^{k-r+1}-1\right)\left(q^{k-r+2}-1\right) \cdots\left(q^{k}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)}$.
Now, consider x^{k+1},

$$
\begin{aligned}
& x^{k+1}=\sum_{r=0}^{k} \frac{\left[\left(q^{k-r+1}-1\right)\left(q^{k-r+2}-1\right) \cdots\left(q^{k}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)} \\
&+\sum_{r=0}^{k} \frac{q^{r}\left[\left(q^{k-r+1}-1\right)\left(q^{k-r+2}-1\right) \cdots\left(q^{k}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)} \\
&=(x-1)(x-q) \cdots\left(x-q^{k}\right) \\
&+\sum_{r=0}^{k-1} \frac{\left[\left(q^{k-r+1}-1\right)\left(q^{k-r+2}-1\right) \cdots\left(q^{k}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{r=0}^{k} \frac{q^{r}\left[\left(q^{k-r+1}-1\right)\left(q^{k-r+2}-1\right) \cdots\left(q^{k}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)} \\
= & (x-1)(x-q) \cdots\left(x-q^{k}\right) \\
& +\sum_{r=1}^{k} \frac{\left[\left(q^{k-r+2}-1\right)\left(q^{k-r+3}-1\right) \cdots\left(q^{k}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r-1}-1\right)} \\
& +\sum_{r=0}^{k} \frac{q^{r}\left[\left(q^{k-r+1}-1\right)\left(q^{k-r+2}-1\right) \cdots\left(q^{k}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)} \\
= & \sum_{r=0}^{k+1} \frac{\left[\left(q^{(k+1)-r+1}-1\right)\left(q^{(k+1)-r+2}-1\right) \cdots\left(q^{k+1}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)} .
\end{aligned}
$$

Since, for $n=1$, obviously we have
$x=\sum_{r=0}^{1} \frac{\left[\left(q^{1-r+1}-1\right)\left(q^{1-r+2}-1\right) \cdots\left(q^{1}-1\right)\right]\left[(x-1)(x-q) \cdots\left(x-q^{r-1}\right)\right]}{(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)}$
the proof is complete.
There follows another identity which is a simple consequence of the previous one:

$$
\begin{equation*}
\sum_{r=0}^{m \text { or } n} \frac{q^{r(r-1) / 2-m n}(q-1)^{r}}{[m-r]![n-r]![r]!}=\frac{1}{[m]![n]!} \tag{5}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \sum_{r=0}^{n} \frac{q^{r(r-1) / 2-m n}(q-1)^{r}}{[m-r]!}[n-r]![r]! \\
&= \sum_{r=0}^{n}\left\{q^{r(r-1) / 2-m n}(q-1)^{r}([m-r+1][m-r+2] \cdots[m])\right. \\
&\times([n-r+1][n-r+2] \cdots[n])\}\{[m]![n]![r]!\}^{-1} \\
&= \sum_{r=0}^{n}\left\{q^{r(r-1) / 2-m n}\left[\left(q^{m-r+1}-1\right)\left(q^{m-r+2}-1\right) \cdots\left(q^{m}-1\right)\right]\right. \\
&\left.\times\left[\left(q^{n-r+1}-1\right)\left(q^{n-r+2}-1\right) \cdots\left(q^{n}-1\right)\right]\right\} \\
& \times\left\{[m]![n]!(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)\right\}^{-1} \\
&= \frac{1}{[m]![n]!} \sum_{r=0}^{n}\left\{\left[\left(q^{m}-1\right)\left(q^{m}-q\right) \cdots\left(q^{m}-q^{r-1}\right)\right]\right. \\
&\left.\times\left[\left(q^{n-r+1}-1\right)\left(q^{n-r+2}-1\right) \cdots\left(q^{n}-1\right)\right]\right\} \\
& \times\left\{\left(q^{m}\right)^{n}\left[(q-1)\left(q^{2}-1\right) \cdots\left(q^{r}-1\right)\right]\right\}^{-1} \\
&= \frac{1}{[m]![n]!} \quad(\text { by identity }(4))
\end{aligned}
$$

The proof is completed by noting that the above identity is symmetric in m and n.
Equipped with the above identity, we are now able to achieve the desired result:

$$
\begin{equation*}
\exp _{q} y \exp _{q} x=\exp _{q}\left[x+y+\left(1-q^{-1}\right) y x\right] \quad \text { if } x y=q^{-1} y x \tag{6}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\exp _{q} y \exp _{q} x= & \left(\sum_{m=0}^{\infty} \frac{y^{m}}{[m]!}\right)\left(\sum_{n=0}^{\infty} \frac{x^{n}}{[n]!}\right) \\
= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} y^{m} x^{n} \sum_{r=0}^{\min \{m, n\}} \frac{q^{-r(r-1) / 2-m n}(q-1)^{r}}{[m-r]![n-r]![r]!} \quad \quad(\text { by identity (5)) } \\
= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r=0}^{\min \{m, n\}} \frac{q^{-r(n-r)} y^{r} x^{n-r}}{[n-r]!} \cdot \frac{q^{-r(r-1) / 2}\left(1-q^{-1}\right)^{r} x^{r}}{[r]!} \cdot \frac{y^{m-r}}{[m-r]!} \\
= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r=0}^{\min \{m, n\}} \frac{x^{n-r}}{[n-r]!} \cdot \frac{q^{-r(r-1) / 2}\left(1-q^{-1}\right)^{r} y^{r} x^{r}}{[r]!} \cdot \frac{y^{m-r}}{[m-r]!} \\
= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r=0}^{\min \{m, n\}} \frac{x^{n-r}}{[n-r]!} \cdot \frac{\left(1-q^{-1}\right)^{r}(y x)^{r}}{[r]!} \cdot \frac{y^{m-r}}{[m-r]!} \\
= & \left(\sum_{l=0}^{\infty} \frac{x^{l}}{[l]!}\right)\left(\sum_{k=0}^{\infty} \frac{\left[\left(1-q^{-1}\right) y x\right]^{k}}{[k]!}\right)\left(\sum_{h=0}^{\infty} \frac{y^{h}}{[h]!}\right) \\
= & \exp _{q} x \cdot \exp _{q}\left[\left(1-q^{-1}\right) y x\right] \cdot \exp _{q} y \\
= & \exp _{q}\left[x+\left(1-q^{-1}\right) y x\right] \cdot \exp _{q} y \\
& \left(b y(3), \text { as } x\left(1-q^{-1}\right) y x=q^{-1}\left(1-q^{-1}\right) y x x\right) \\
= & \exp _{q}\left[x+\left(1-q^{-1}\right) y x+y\right] \\
& \left(\operatorname{by}(3), \text { as }\left[x+\left(1-q^{-1}\right) y x\right] y=q^{-1} y\left[x+\left(1-q^{-1}\right) y x\right]\right) \\
= & \exp _{q}\left[x+y+\left(1-q^{-1}\right) y x\right] .
\end{aligned}
$$

Acknowledgments

MYW is grateful to members in the Department of Mathematical Sciences of the University of Durham for all relevant help. This work was partially supported by a British ORS Award as well as a Durham University Research Award.

Appendix

The following is the so-called q-binomial expansion formula and its proof:

$$
(x+y)^{n}=\sum_{r=0}^{n}\left[\begin{array}{l}
n \tag{A1}\\
r
\end{array}\right] x^{r} y^{n-r}
$$

where

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right] \equiv \frac{[n]!}{[r]![n-r]!} \quad[n] \equiv \sum_{k=0}^{n-1} q^{k} \quad[0]!\equiv 1
$$

subject to the condition that $x y=q^{-1} y x, q$ being some complex number.
Proof. Suppose for some $n=k$, we have

$$
(x+y)^{k}=\sum_{r=0}^{k}\left[\begin{array}{l}
k \\
r
\end{array}\right] x^{r} y^{k-r} .
$$

Now consider $(x+y)^{k+1}$,

$$
\begin{aligned}
(x+y)^{k+1}= & \sum_{r=0}^{k} \frac{[k]!}{[r]![k-r]!}(x+y) x^{r} y^{k-r} \\
= & \sum_{r=0}^{k} \frac{[k]!}{[r]![k-r]!} x^{r+1} y^{k-r}+\sum_{r=0}^{k} \frac{[k]!}{[r]![k-r]!} q^{r} x^{r} y^{k-r+1} \\
= & x^{k+1}+\sum_{r=0}^{k-1} \frac{[k]!}{[r]![k-r]!} x^{r+1} y^{k-r}+\sum_{r=0}^{k} \frac{[k]!}{[r]![k-r]!} r^{r} x^{r} y^{k-r+1} \\
= & x^{k+1}+\sum_{r=1}^{k} \frac{[k]!}{[r-1]![k-r+1]!} x^{r} y^{k-r+1}+\sum_{r=0}^{k} \frac{[k]!}{[r]![k-r]!} q^{r} x^{r} y^{k-r+1} \\
= & x^{k+1}+\sum_{r=1}^{k} \frac{[k]!\left(1+q+\cdots+q^{r-1}\right)}{[r]![k-r]!\left(1+q+\cdots+q^{k-r}\right)} x^{r} y^{k-r+1} \\
& +\sum_{r=0}^{k} \frac{[k]!}{[r]![k-r]!} q^{r} x^{r} y^{k-r+1} \\
= & x^{k+1}+\sum_{r=0}^{k} \frac{[k]!\left(1+q+\cdots+q^{k}\right)}{[r]![k-r]!\left(1+q+\cdots+q^{k-r}\right)} x^{r} y^{k-r+1} \\
= & \sum_{r=0}^{k+1} \frac{[k+1]!}{[r]![k+1-r]!} x^{r} y^{k+1-r}
\end{aligned}
$$

so the same formula holds for $n=k+1$.
Since for $n=1$, obviously we have

$$
x+y=\sum_{r=0}^{1} \frac{[1]!}{[r]![1-r]!} x^{r} y^{1-r}
$$

the proof is complete.

References

[1] Schützenberger M P 1953 C. R. Acad. Sci., Paris 236 352-3
[2] Cigler J 1979 Monatshefte Math. 88 87-96
[3] Fairlie D B 1991 q-Analysis and quantum groups Proc. of 'Symmetries in Sciences V', Schloss Hofen, Austria, 1991 (New York: Plenum) pp 147-57
[4] Faddeev L and Volkov A Yu 1993 Phys. Lett. 315B 311

[^0]: \dagger E-mail address: david.fairlie@durham.ac.uk
 \ddagger E-mail address: vickiwu@ms5.hinet.net

